Multilevel Quasi Monte Carlo Methods for Elliptic PDEs with Random Field Coefficients via Fast White Noise Sampling

نویسندگان

چکیده

When solving partial differential equations (PDEs) with random fields as coefficients, the efficient sampling of field realizations can be challenging. In this paper we focus on fast Gaussian using quasi-random points in a finite element and multilevel quasi Monte Carlo (MLQMC) setting. Our method uses stochastic PDE (SPDE) approach Lindgren et al. combined new algorithm for white noise which is tailored to (ML)QMC. We express wavelet series expansion that divide into two parts. The first part sampled contains number terms order decaying importance ensure good (QMC) convergence. second correction term standard pseudo-random numbers. show how both performed linear time memory complexity mesh cells via supermesh construction, yielding an overall cost. Furthermore, our technique used enforce MLQMC coupling even case nonnested hierarchies. demonstrate efficacy numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients

We consider the application of multilevel Monte Carlo methods to elliptic PDEs with random coefficients. We focus on models of the random coefficient that lack uniform ellipticity and boundedness with respect to the random parameter, and that only have limited spatial regularity. We extend the finite element error analysis for this type of equation, carried out in [6], to more difficult problem...

متن کامل

Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients

In this paper we analyze the numerical approximation of diffusion problems over polyhedral domains in R (d = 1, 2, 3), with diffusion coefficient a(x, ω) given as a lognormal random field, i.e., a(x, ω) = exp(Z(x, ω)) where x is the spatial variable and Z(x, ·) is a Gaussian random field. The analysis presents particular challenges since the corresponding bilinear form is not uniformly bounded ...

متن کامل

Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients

We consider the numerical solution of elliptic partial differential equations with random coefficients. Such problems arise, for example, in uncertainty quantification for groundwater flow. We describe a novel variance reduction technique for the standard Monte Carlo method, called the multilevel Monte Carlo method. The main result is that in certain circumstances the asymptotic cost of solving...

متن کامل

Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients

This work is motivated by the need to study the impact of data uncertainties and material imperfections on the solution to optimal control problems constrained by partial differential equations. We consider a pathwise optimal control problem constrained by a diffusion equation with random coefficient together with box constraints for the control. For each realization of the diffusion coefficien...

متن کامل

Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs

In this paper Monte Carlo Finite Element (MC FE) approximations for elliptic homogenization problems with random coefficients which oscillate on n ∈ N a-priori known, separated length scales are considered. The convergence of multilevel MC FE (MLMC FE) discretizations is analyzed. In particular, it is considered that the multilevel FE discretization resolves the finest physical length scale, bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2021

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/20m1329044